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Abstract—Accurate automated detection of road pavement
distresses is critical for the timely identification and repair of
potentially accident-inducing road hazards such as potholes
and other surface-level asphalt cracks. Deployment of such a
system would be further advantageous in low-resource envi-
ronments where lack of government funding for infrastructure
maintenance typically entails heightened risks of potentially
fatal vehicular road accidents as a result of inadequate and
infrequent manual inspection of road systems for road hazards.
To remedy this, a recent research initiative organized by the
Institute of Electrical and Electronics Engineers (”IEEE”) as
part of their 2020 Global Road Damage Detection (”GRDC”)
Challenge published in May 2020 a novel 21,041 annotated
image dataset of various road distresses calling upon academic
and other researchers to submit innovative deep learning-based
solutions to these road hazard detection problems. Making
use of this dataset, we propose a supervised object detection
approach leveraging You Only Look Once (”YOLO”) and the
Faster R-CNN frameworks to detect and classify road distresses
in real-time via a vehicle dashboard-mounted smartphone
camera, producing 0.68 F1-score experimental results ranking
in the top 5 of 121 teams that entered this challenge as of
December 2021.

Keywords-Deep Learning, Computer Vision, Object Detec-
tion, Road Damage Detection and Classification, Ensemble
Learning, Road Infrastructure Management, Urban Planning

I. INTRODUCTION

Reliable road infrastructure plays a critical role in sup-
porting modern economies through the facilitation of the
flow of goods and people. As such a 2020 OECD study
of 1,266 European regions across 26 EU member countries
estimated statistically significant increases of 0.07%, 0.12%
and 0.17% in a region’s GDP, population and employment
figures respectively as a result of a 1% increase in that
same region’s road access to GDP, population and labor
resources falling within a three hour drive of its borders over
a 22-year period [1]. This social and economic importance
is further highlighted in low- and middle-income countries
where World Bank economists estimated in 2017 that a 10%
reduction in road traffic deaths would contribute to a 3.6%
increase in per capita real GDP of these countries over a 24-
year period considering the outsized mortality impact of road
traffic-related accidents on populations’ more economically
productive segments [2]. Road networks’ developmental

importance is further highlighted in the significant share of
OECD government budgets earmarked for road maintenance
and construction spending annually, with for instance OECD
countries devoting in 2016 a combined $108.5B or 0.19%
of total OECD GDP to road infrastructure maintenance and
with the United States alone accounting for an estimated
$53.4B or 49% of this amount [3].

Despite road networks’ critical functions as catalysts for
economic development, many governments still rely on
either relatively inefficient and inaccurate human visual
inspections or relatively expensive and difficult to scale
laser- and high definition camera-based systems to carry
out surface-level quality evaluations of asphalt roadways in
order to identify potentially hazardous pavement distresses
such as potholes and cracks that may cause road accidents
and endanger motorists [4]. For instance as the majority
of U.S. Department of Transportation (DOT) state agencies
employ government workers or third party contractors to
provide annual or biennial estimates of state highway pave-
ment deterioration measuring the prevalence and severity
of cracking, patching, faulting and joint deterioration per
roadmile for different sections of state highways in order
to meet federal reporting requirements mandated under the
2012 Moving Ahead for Progress in the 21st Century Act
(MAP-21), inspectors will typically complete these estimates
through on-the-ground or windshield visual surveys of road
distresses in a way that therefore subjects these calculations
to a large element of human error [4]–[6]. Other methods,
such as driving specialized vehicles equipped with various
sensors such as laser scanners [7], ground penetrating radar
(”GPR”) antennas [8] and high definition cameras [6] [9]
such as shown in Figure 1 along sections of roadway in order
to collect high-definition images and 3D reconstructions of
the road pavement, are similarly impractical given the signif-
icant capital and labor costs required to operate these tech-
nologies [4]. Given these limitations of existing methods,
the relatively more cost-effective alternative of detecting and
cataloging road distresses using computer vision algorithms
trained on low-cost smartphone-captured pavement images
has recently emerged as a subject of interest in academia as
public releases of various annotated image datasets of road
pavement distresses such as the 2020 GRDC dataset have



Figure 1: Example of specialized road distress measurement
vehicle, developed by Advanced Infrastructure Design Inc.,
showcased in [6]

encouraged further research on the subject.

II. LITERATURE REVIEW

Several deep learning-based methods for the detection of
road distresses have been previously proposed with asso-
ciated annotated image datasets varying in their scale and
image subject focus. Zhang et al. [10] developed ConvNet-
and SVM-based approaches for detecting pavement cracks
using a base dataset of 500 pavement crack images of
Temple University campus roads augmented 2000x into
a final 1M image dataset, producing F-1 scores of 0.90
and 0.74 for each approach respectively. Majidifard et al.
[11] similarly proposed YOLOv2- and Faster R-CNN-based
approaches to road damage detection leveraging a 7,237 an-
notated image dataset compiled through Google StreetView
API queries, yielding 0.84 and 0.65 F-1 scores for each
approach respectively. Angulo et al. proposed a RetinaNet-
based approach to road damage detection making use of
a 18,034 annotated image dataset extending Maeda et al.’s
[12] original 9,053 road distress dataset with additional
images collected throughout Italy and Mexico, yielding a
model boasting 0.73 F-1 score with 0.5s inference time,
allowing for potential real-time road damage detection appli-
cations through model deployment on a dashboard-mounted
smartphone [13]. However as many of these annotated road
damage image datasets such as those outlined in [10], [11],
[13] remain private and unavailable to the broader academic
research community, the GRDC’s public release of this novel
image dataset serves an important role in filling this relative
dearth of raw image data in this space as further outlined in
the following section.

III. ROAD DAMAGE DETECTION METHODOLOGY

A. 2020 GRDC Dataset

The GRDC dataset combines 21,041 road images of pixel
sizes 600 x 600 and 720 x 720 captured through a smart-

phone camera mounted on a vehicle dashboard traveling
at an average speed of 25 mph and subsequently hand-
annotated by a team of researchers from the Indian Institute
of Technology Roorkee and the University of Tokyo [4]. As
the GRDC’s stated objective was to develop deep learning
models capable of generalizing to predicting road distresses
across multiple countries, as opposed to those of a single
country as was the focus of the competition’s 2018 precursor
using 9,053 images collected throughout Japan only, the raw
dataset is further divided into 10,506, 7,706 and 2,829 im-
ages from Japan, India and the Czech Republic respectively
[4]. Additionally while the raw dataset provides annotations
for a total of eight different road distress classes based on
the Japanese Maintenance Guidebooks for Road Pavement
[14], only the top four classes by frequency counts, namely
Longitudinal cracks (class label D00), Lateral Cracks (D10),
Alligator Cracks (D20) and Potholes (D40), were considered
in the GRDC. Descriptive statistics of the distribution of road
distresses and a data dictionary of each are further provided
in Table I and Figures 2 - 3 respectively.

Table I: Road Distress Types Overview

Distress Name Distress Code Sample Image

Longitudinal Crack D00

Lateral Crack D10

Alligator Crack D20

Pothole D40

B. Proposed Approach
This paper applies both the Faster R-CNN computer and

YOLO (”You Only Look Once”) computer vision frame-
works to the GRDC dataset in order to explore the relative
strengths and weaknesses of applying one- and two-stage
detectors to the task at hand respectively. The Faster R-
CNN framework developed by Girshick et al. [15] may
be designated as ”two-stage” given its process of first
outputting region proposals in an image as candidate regions
potentially containing an object of interest before applying
a second Region of Interest (”RoI”) layer on each region
proposal to classify the image and predict bounding box



(a) Japan: Longitudinal Crack (b) Japan: Lateral Crack (c) Japan: Alligator Crack (d) Japan: Pothole

(e) Czech R.: Longitudinal Crack (f) Czech R.: Lateral Crack & Pothole (g) India: Alligator Crack (h) India: Pothole

Figure 2: Image Examples of Road Distress Classes

Figure 3: Road Distress Counts by Country

vertices and dimensions within each. While Faster R-CNN
boasts higher mAP scores than its predecessor Fast R-
CNN and R-CNN models as measured on popular image
dataset benchmarks such as MS COCO and PASCAL VOC
2007 and enables real-time detection through approximately
200ms per image test times using GPUs versus 47.0s in
the case of R-CNN [15] [16], one-stage detectors such as
YOLO were previously developed to overcome some of

these foregoing inference time bottlenecks. YOLO may be
styled as ”one-stage” due to its bypass of Faster R-CNN’s
region proposal stage in order to divide an input image
into a SxS grid of anchor boxes which are then passed
through a series of convolutional layers to output a set of
n bounding boxes with labels. Each of these n bounding
boxes is then passed through a time-efficient non-maximum
suppression (”NMS”) algorithm to eliminate bounding boxes
with areas of overlap over a certain Intersection over Union
(”IoU”) threshold [17]. Altogether this one-stage process
allows for much improved inference speeds with the latest
YOLO implementation of ultralytics-YOLO (”YOLOv5”)
allowing for per image prediction times in the 7-10ms
context using GPUs [18]. Given these model architecture and
inference time differences we investigated both YOLOv5 in
its x (142M trainable parameters) and l (77M parameters)
size varieties as well as Faster R-CNN, finding that both
YOLOv5-x and l model versions outperformed Faster R-
CNN in F1-score and inference time. YOLOv5 was therefore
subsequently used as the base model architecture in this
approach.

In order to further improve the F1-score performance of
this YOLO-based method, the Ensemble Model (”EM”) and
Test Time Augmentation (”TTA”) approaches were further
used in the prediction stage. The EM approach ensem-



bles or averages the bounding box predictions of several
YOLOv5 models trained with different batch size, learn-
ing rate, optimizer and other hyperparameters, with each
model’s differing kernel patterns learned under its unique set
of hyperparameters supplementing those of other included
models; as with standard tree-based horizontal or vertical
ensembling methods such as Random Forests or Gradient
Boosting this has the effect of reducing model prediction
variance such that improved accuracy may be achieved [19].
The tradeoff for this improved accuracy would therefore be
increased inference time and reduced model interpretability
as no single model would be responsible for the resulting
predictions. Similarly this second Test Time Augmentation
approach used in this case ensembles individual model
predictions on different augmented image versions, derived
through horizontal flipping and scaling image resolution
1.30x, 0.83x and 0.67x, of the same base test image. This
procedure subsequently filters these five distinct bounding
box prediction sets, corresponding to one base and four
augmented images, through the NMS procedure based on
a selected IoU threshold and a comparison of bounding
box confidence scores. This TTA procedure therefore allows
for reduced generalization error in its multiple prediction
ensembling. Lastly these TTA and EM approaches can be
combined such that each k set of base and augmented test
images produced through TTA can be fed to each of i EM
models in order to yield k * i bounding box prediction
sets which are then averaged and filtered through the NMS
procedure as detailed in Figure 4, allowing for increased
prediction accuracy through averaging the predictions of
several different models across multiple augmented versions
of the same base test image.

Figure 4: Overview of TTA + EM procedure

The GRDC train dataset was further split into 98%
training images and 2% validation images in order to val-
idate model loss parameter reduction after each training
epoch, with these final train and validation sets containing
20,621 and 420 images respectively. In the case of YOLOv5
this base training dataset was further augmented using
YOLOv5’s standard training augmentation pipeline includ-

ing horizontal and vertical image flipping and saturation
and hue augmentations as detailed in Table II, while this
unaltered base dataset was used for Faster R-CNN training.

Table II: YOLOv5 Training Data Augmentations

Data Augmentation Parameter Value

Hue 0.7
Saturation 0.015
Translation fraction 0.1
Scaling gain 0.5
Vertical Flipping True
Mosaic True

IV. EXPERIMENTAL RESULTS

Per GRDC competition guidelines test scores were de-
rived by submitting through the GRDC’s competition web-
site prediction sets for two unreleased test sets containing
2,631 and 2,664 images respectively and sampled following
similar country and target class distributions as the training
set per the GRDC (”test1” and ”test2”) [20]. YOLOv5x
and l models as well as Faster R-CNN were trained as
a first step using standard out-of-the-box training values
for learning rate, optimizer, momentum and other hyper-
parameters, producing F1 scores of 0.52, 0.52 and 0.50
respectively. Additional tuning of batch size and optimizer
hyperparameter values showed 8-32 image batch size and
stochastic gradient descent with Nesterov accelerated mo-
mentum as being optimal in the case of YOLOv5, while
SGD with simple momentum and 8-16 batch size were
similarly demonstrated as optimal in the Faster R-CNN
context. As further tuning YOLOv5x, YOLOv5l and Faster
R-CNN models showed superior performance on the part of
YOLOv5 as measured by F1 score, the YOLO framework
was subsequently adopted as the core of this proposed
approach.

In order to increase model heterogeneity to make this
ensemble approach more generalizable, and operating within
a maximum inference time constraint of 0.50s in order to
theoretically enable real-time detection in the field, several
versions of these YOLOv5x and YOLOv5l configured with
different batch size and other hyperparameter values were
trained and subsequently ensembled. Following this ap-
proach an ensemble of six YOLOv5x and YOLOv5l models
each trained with 32, 16 and 8 batch sizes for 150 epochs
was shown empirically to yield significant improvement over
these previous single-model experiments with an F1 score
of 0.57, such that this ensemble structure was subsequently
selected as the core of this approach. Given it was further ob-
served that per image inference times increased linearly with
number of models included in this ensemble this six-model
approach producing maximum 0.42ms per image inference
times with the vast majority of predictions times falling in



the 0.21-0.40ms range was therefore selected to satisfy this
self-imposed 0.5s inference time constraint. Following this
EM stage, applying TTA augmentations as shown in Figure
3 further allowed for increasing F1 score to 0.59. Finally
in order to further improve model prediction performance,
an exhaustive grid-search of YOLOv5 NMS and minimum
confidence threshold (C) hyperparameter values was con-
ducted in order to ascertain the optimal combination of these
hyperparameters, yielding a highest top 5-placing F1 score
of 0.68 with C = 0.25 and NMS = 0.999. A summary of
all F1 scores produced through this approach for both test1
and test2 datasets is shown below in Tables III and IV.

Table III: Test1 F1 Scores of YOLOv5 Model Ensemble
varying Confidence Threshold and NMS

Confidence Threshold

0.1 0.15 0.20 0.25 0.30

NMS
Threshold

0.999 0.6403 0.6645 0.6791 0.6830 0.6786

0.99 0.6324 0.6591 0.6753 0.6800 0.6763

0.95 0.5929 0.6248 0.6449 0.6533 0.6537

0.90 0.5497 0.5862 0.6094 0.6220 0.6260

0.85 0.5185 0.5565 0.5826 0.5955 0.6023

0.80 0.4915 0.5290 0.5572 0.5705 0.5801

Table IV: Test2 F1 Scores of YOLOv5 Model Ensemble
varying Confidence Threshold and NMS

Confidence Threshold

0.1 0.15 0.20 0.25 0.30

NMS
Threshold

0.999 0.6306 0.6585 0.6739 0.6770 0.6769

0.99 0.6240 0.6532 0.6699 0.6744 0.6749

0.95 0.5828 0.6173 0.6382 0.6477 0.6513

0.90 0.5416 0.5796 0.6033 0.6155 0.6228

0.85 0.5118 0.5508 0.5736 0.5875 0.5970

0.80 0.4842 0.5211 0.5463 0.5657 0.5757

V. SYSTEM IMPLEMENTATION

Semi-automated road monitoring systems leveraging com-
puter vision algorithms such as those presented here could be
deployed using dashboard-mounted smartphones in order to
supplement or potentially replace human visual inspection
in either a real-time or offline data processing setting.
To further improve recall performance in higher-resource
environments, this system could use images taken from
several smartphones mounted at different angles in the same
vehicle in order to strengthen same-location predictions with
different fields of view of the same sections of road.

Furthermore, by using image GPS coordinates automat-
ically embedded in that image file’s EXIF data, complete

road quality maps of neighborhoods, cities or states could be
compiled post-data collection in order to quantify levels of
road distress across different road sections, offering a visual-
ization medium to better inform government agencies’ road
maintenance funding allocation decisions for instance. To
demonstrate this, the author created a simple Python folium
map of road surface quality in a Paulus Hook neighborhood
block in Jersey City, NJ as shown in Figure 5 using road
images queried through the Google Street View API and
passed to this six-model model ensemble. Leveraging the
model’s prediction confidence score as a relatively crude
proxy for road damage severity, road damage scores can
be computed for different sections of road using these
road distress frequencies and severities. To facilitate further
analysis, this road section-level data could be exported to a
tabular format for storing in government agency databases,
allowing for comprehensive road analyses across entire cities
and states to be performed.

Figure 5: Folium Map of Road Distresses in Paulus Hook
neighborhood in Jersey City, NJ

Other low-cost data collection methods such as smart-
phone accelerometer data could further reinforce this
computer-vision approach such as by providing estimates
for road roughness such as proposed in [21]. As the Interna-
tional Roughness Index (IRI) is another road distress metric
commonly monitored by OECD government agencies such
as many US Department of Transportation (”DOT”) state
agencies as part of MAP-21 federal reporting requirements,
a computer vision-based model such as that presented in
this paper could therefore be supplemented with models
regressing IRI on accelerometer data to provide a fuller
picture of road quality across both surface quality and



roughness [22].
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VII. CONCLUSION

The current relatively elevated costs associated with com-
pleting regular and extensive road damage surveys at the
local and regional levels through human visual inspection
calls for computer vision-assisted monitoring of road infras-
tructure. This paper put forward a YOLO-based approach
to road distress detection using model ensembling and test
time augmentation, yielding a 0.68 F1 score on test data
placing in the top 5 of 121 teams that entered the 2020
Global Road Detection Challenge as of December 2021.
Leveraging this YOLO model ensemble, we furthermore
proposed a novel approach to road distress monitoring using
several dashboard-mounted smartphones enabling the real-
time capture and processing of images and videos of road
hazards at different angles. Using a batch of Google Street
View API road images with embedded EXIF GPS coordinate
data queried for neighborhood block in Jersey City, NJ,
we further demonstrate a simple indexing methodology for
quantifying and mapping road surface quality based on
distress frequency and severity. As part of future work,
we plan to investigate additional methods for improving
the cost-effectiveness of road roughness data collection
and processing in order to integrate road roughness as an
additional dimension to road quality monitoring.
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